第 5 章 光合最优气孔导度耦合模型

Cowan and Farquhar (1977) 关于最优气孔导度的描述概括如下: 最优气孔行为理论认为气孔的最优化行为就是在某一时间段内, 最大化光合碳固定的同时最小化蒸腾作用,也就是说,对于一定的水分消耗,最大化光合碳固定。即使得:

\[\begin{equation} A - \lambda E \tag{5.1} \end{equation}\]

有最大化,其中 \(\lambda\) 是临界水分利用效率,也即植物损耗单位水分的 C 生产量,单位一般为 \(mol \: CO_2 \cdot mol^{-1} H_2O\),可通过光合速率和蒸腾速率计算。

5.1 FARAO 函数

FARAO 函数用于找到最大化 \(A - \lambda E\) 的** Ci **值。

FARAO(lambda = 0.002, Ca = 400, VPD = 1,
      photo = c("BOTH", "VCMAX","JMAX"), 
      energybalance = FALSE, C4 = FALSE, 
      Tair = 25, Wind = 2, Wleaf = 0.02,
      StomatalRatio = 1, LeafAbs = 0.86, ...)

FARAO2(lambda = 0.002, Ca = 400, 
       energybalance = FALSE, ...)

其参数同 fitaciPhotosyn,在此不多做介绍,可参考Belinda E. Medlyn et al. (2011)

参考文献

Cowan, I. R., and G. D. Farquhar. 1977. “Stomatal Function in Relation to Leaf Metabolism and Environment.” Symposia of the Society for Experimental Biology 31 (23): 471.
Medlyn, Belinda E., Remko A. Duursma, Derek Eamus, David S. Ellsworth, I. Colin Prentice, Craig V. M. Barton, Kristine Y. Crous, Paolo De Angelis, Michael Freeman, and Lisa Wingate. 2011. “Reconciling the Optimal and Empirical Approaches to Modelling Stomatal Conductance.” Global Change Biology 17 (6): 2134–44.